
THE MOTION OF A SMALL DROP OF A PARTIALLY WETTING FLUID 

UNDER THE ACTION OF AN ALTERNATING ELECTRIC CURRENT 
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We analyze the motion of a drop of a partially wetting fluid on a horizontal 
surface for the case in which an alternating electric current is passed through 
the fluid. 

Small volumes of fluid (drops), wetting a solid surface, are formed in a variety of 
technological processes. In many cases there arises the problem of intensifying the pro- 
cesses of heat and mass transfer within the drops. If the fluid is electrically conductive, 
an effective means of achieving this intensification may be an alternating electric current 
under whose action the drops periodically change their shape. As a result, a periodic mo- 
tion of fluid arises within the drops, and this significantly affects the heat and mass trans- 
fer. 

Theoretical analysis of the motion of small fluid drops wetting a solid surface is made 
complicated by the presence of a three-phase contact line (the drop boundaries). The wetting 
which occurs as the three-phase contact line is shifted exhibits a complex physicochemical 
nature [i, 2]. As was demonstrated in [3], the hydrodynamic approach to the analysis of 
this process is impossible because of the incompatibility of the conditions at the free boun- 
dary with the conditions of fluid adhesion to the solid surface near the drop boundary (see 
also [2]). The various solutions of this problem are examined in [4-6]. In particular, 
it is demonstrated in [6] in conjunction with the results Of [7, 8] that consideration of 
the wedge effect in the hydrodynamic equations makes it possible to state a closed noncontra- 
dictory formulation of the problem dealing with the spreading of a partially wetting fluid 
over a solid surface. 

The practical application in these calculations of the recommendations from [4-6] is 
made difficult because of the high complexity of the wetting process, its dependence on a 
large number of factors [i, 2, 9], and the absence of detailed data on the wetting process. 
In this connection, interest has been shown in the situations in which the motion of the 
three-phase contact line can be neglected. Experimental data [i, 2, 9, i0] show that the 
velocity of motion for the three-phase contact line is associated with the magnitude of the 
dynamic contact wetting angle. In this case, under normal conditions, the shifting of the 
drop boundary is hindered by the fact that the wetting angle may change within significant 
limits at a nonmoving boundary. With consideration of this phenomenon, neglecting the shift 
in the drop boundary turns out to be completely valid from the physical standpoint with peri- 
odic action of a force of sufficiently high frequency on the drop, when the three-phase con- 
tact line fails to "crack" the change in the contact wetting angle. 

Let us examine a "flat" drop of an electrically conducting partially wetting fluid (i.e., 
a fluid such that its contact wetting angle ~m falls within the limits ~/2 > C~n > 0), lying 
freely on a horizontal plane metal plate (see Fig. i). A periodic electric current is passed 
through the system along the uniform z axis. To study drop motion, let us employ the approxi- 
mation from magnetohydrodynamics [ii]. For the sake of brevity, we will not write out the 
corresponding equations here. Analysis of the magnetohydrodynamic equations and the boundary 
conditions at the free surface of the drop allows us to define a set of criteria which deter- 
mine the periodic motion of the fluid: Re = LU/v is the Reynolds number, Re m = ~0oLU is 
the magnetic Reynolds number, and S = 6/LpU = is the criterion which determines the role of 
surface tension. We will define the characteristic velocity as the ratio U = AL/T, where 
T is the characteristic time equal to the period of current oscillation in the system; AL 
is the characteristic magnitude of drop surface displacement, AL = LPm/P0; Pm = B0j0L is the 
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Fig. i. Drop of an electrically conducting fluid 
in a magnetic field. 

characteristic magnitude of magnetic pressure; P0 = 6/L is the characteristic magnitude of 
the pressure within the drop, generated by surface tension. 

For small drops of a good electrically conducting fluid we find the following strong 
inequalities satisfied: Re ~ i, Re m ~ i, S ~ i. (For example, for tin at a temperature 
of 600 K and L = i0 -~ m, B 0 = 0.i T, J0 = 107 A/mi, T = i0-2 sec, we obtain Re ~ 0.i, Re m 
4.10 -8 , S ~ 2"107.) For a good wetting fluid in which a m ~ i, we can assume that the de- 
rivatives of all the quantities along and across the drop are also associated by the strong 
inequality 3/3y ~ 3/3x. Satisfaction of these strong inequalities makes it possible signi- 
ficantly to simplify the problem of calculating the motion of the fluid drop, since we can 
use the noninductive approximation [ii] in combination with the approximation of lubrication 
theory [12]. In this case, in the magnetic pressure we must make allowance only for the 
interaction of the current flowing within the drop and exhibiting density j = {0, 0, j(t)} 
and the external magnetic field B = {B(t), 0, 0}. The equations of the conservation of mo- 
mentum in this approximation are as follows (because of the small drop dimensions we neglect 
the force of gravity): 

OP OZu OP 
,,~, =-o, - -  + jp = o. ( 1 )  

Ox 09 z Oy 

Equat ions  (1) must be made more comple te  through the  c o n t i n u i t y  e q u a t i o n  

Ou Ov 
--+ .... o ,  (2) 

Ox Oy 

the boundary conditions on the solid surface y = 0: 

u=O, v:=O 

and the boundary conditions on the free surface y = f(x, t)" 

P = -- 6 02[ 
Ox z 

(3) 

(4) 

OU 
= o ,  ( 5 )  

oy 

of ~ + u  --v.  (6)  
Ot Ox 

From Eqs. (i) and conditions (2)-(6) we can determine the projections of velocity in the 
form: 

u 
9v Ox Ox 8 ] 

9v Ox 2 Ox ~ ] 6 2 

+ ( ]B Of - -6  c~, ) Of y' }. 
Ox Ox ~ Ox 2 

(7) 

We will specify the product jB = j0B0(l + sinmt), m = 2~/T. Then, having substituted 
expression (7) into the kinematic condition (6), we obtain an equation for the determination 
of the shape of the drop boundary f(x, t): 
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It is more convenient to carry out specific calculations in dimensionless variables 
x* = x/L, t* = t/T, f* = f/~L. Here a is the average value of the contact wetting angle 
in the motion of the drop. If the vibration amplitude for the drop surface is small, then 
we may, apparently, assume that a = ~m. Let us rewrite Eq. (8) in dimensionless variables: 

7 - ~  + ~ f~ 03fOx3 • OxOf (I + sin 2~t) = O, (9) 

where g = 3pv/Tda 3, x 2 = j0BoL2/6. Here and in a l l  t h a t  fo l lows  the  a s t e r i s k  has been dropped 
from the  n o t a t i o n  of  the  d imens ion le s s  v a r i a b l e s .  

For a drop t h a t  i s  symmetr ica l  r e l a t i v e  to the  p lane  x = 0, Eq. (9) must be cons ide red  
t o g e t h e r  wi th  the  fo l l owing  c o n d i t i o n s  a t  the  drop boundary [x I = xf  ( see  Fig .  1) which 
are  of  the  form 

f = 0 ,  < Of " = i ,  f3 ( O~f x~ Of __• Of s i n 2 ~ t ) = 0 ,  
i Ox / Ox 3 Ox  Ox (10) 

where the  ang le  b racke t s  i n d i c a t e  averag ing  over t ime.  The second c o n d i t i o n  in (10) has 
been written to account for the fact that in the approximation under consideration the slope 
of the free boundary of the drop and its tangent are indistinguishable. The third condition 
in (i0) physically indicates the absence of a fluid flow rate through the drop boundary 
Ixl = xf. In addition to (i0), we must also specify the drop mass, which leads to the con- 
dition 

:fdx ~ M, 
--x/ 

(iz) 

where M = m/p~L 2. 

The invariance of Eq. (9) and conditions (i0) and (ii) relative to the transformation 
x + -x allows us in place of (i0) to write the equivalent set of boundary conditions for 

x = -xf: 

/ Of N=l, /a[ 03_~f __• Of (l+sin2nt)]=O (12) [=o, 
\ Ox / [ Ox 3 Ox ] 

and for x = 0 

of =0, o~f _o ,  
Ox Ox 3 ( 13 ) 

whose use in the calculations is more convenient, since it reduces the region of integration 
for Eq. (9). 

Let us examine the small vibrations of the free drop boundary near the equilibrium 
position. We will present the equation for the boundary y = f(x, t) in the form f(x, t) = 
f0(x) + Eft(x, t) so that <f(x, t)> = f0(x), where e is a formal small parameter. Analy- 
sis of the boundary-value problem (9), (12), and (13) shows that we can assume that s = • 
i. Then, for determination of f0(x) we obtain the problem 

dqo • dfo --0, 
dx 3 dx 

dfo dSfo 
fo ----- O, d[o -- 1 when X~--Xf, -- ~ 0, -- 0 when X=0. 

dx dx d;: 

(14) 

Let us note that the third condition in (12) is used in deriving Eqs. (14), while condi- 
tion (Ii) in application to f0(x) is equivalent to selection of the quantity xf > 0. The 
solution of problem (14) is written as: 
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F i g .  2. The f u n c t i o n s  a (q )  and b (~)  f o r  p a r a m e t e r  v a l u e s  o f  
= 3/2~ (i), 5/2~ (2), 7/2~ (3), and 9/27 (4). 

[~ = [oh (• - -  ch (xx)lm sh (xx.,). ( 1 5 )  

For  d e t e r m i n a t i o n  o f  t h e  f u n c t i o n  f ~ ( x ,  t ) ,  we d e r i v e  t h e  b o u n d a r y - v a l u e  p rob lem 

~'--~-+-'~--xOf' O [  [~ ( Oaf,o., "a Of, sin2at)]__=O (16)  

t ,=o,  ro {" o'f,o , = o , = - x , ,  (17) 

o.1~ = o, P_ 'Tu = o f o r  x ---o, Ox Ox 3 (18) 

0 

[,dx = O. 
- -X  f 

(19) 

As we can see, the number of conditions in (17)-(19) exceeds the order of Eq. (16), since 
the quantity xf > 0 has already been given in the determination of the function f0(x). The 
problem can be solved if we note that the second of the conditions in (17) is satisfied auto- 
matically, since f0lx=xf = 0. If we exclude the second of the conditions in (17) from our 

consideration, we will find the sought boundary-value problem. 

Considering the linearity of problem (16)-(19), we will seek the function f1(x, t) in 
the form 

fl (x, t) = a (x) sin 2~l q- b (x) c a  2~t. 
(20) 

Having substituted (20) into (16), we obtain a system of ordinary differential equations 
which, after integration with consideration of the second of the conditions from (18), have 
the form 

dab ~ ( d~o daa ) 
2~ i ad~ + t~--d~ = o, 2,~ ~o ~,~ + t~ d~ d~3 = o, < 21) 

where ~ = x + xf. The boundary conditions for system (21) follow from conditions (17)-(19): 

a = b ---- 0 when ~] ---- 0, (22) 

da db 
= 0 when I]----- Xf, (23) 

dn dn 

x I xy 
S ad~l -= ~ bdl] = O. ( 24 ) 
0 0 

Equations (21) exhibit a singularity at the point q = O, since f01D=o = O. Analysis 
of these equations shows that this point is a regular singular point [13] and the solution 
near this point can be represented in the form of a converging series: 
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s s s 2 a = ln~ ~ h  + aa~ k, b = ln~ ~ k  + bk@. (25) 
k ~ 2  k ~  1 k ~ 2  k =  1 

Here we have a l r e a d y  taken  i n t o  c o n s i d e r a t i o n  boundary c o n d i t i o n s  (22) ,  A f t e r  s u b s t i t u t i o n  
of (25) into system (21), we obtain recurrent relationships for the expansion factors (25), 
which are not presented here because they are too cumbersome. In this case, the coefficients 
~2, ~2, ai, b2 are determined as conditions (23) and (24) are satisfied. As an example, 
Fig. 2 shows the results from a calculation of the functions a(N) and b(N) according to form- 
ulas (25), in which we took into consideration the first 60 terms, for the values of the 
parameters ~2 = 0.i; xf = 3. As we can see, with a change in the parameter ~ the functions 
a(D) and b(D) do not change monotonically. 

The functions a(D) and b(N) allow us to determine the projections of the velocities 
u(x, y, t) and v(x, y, t) from (7). The next stage is the calculation of the characteristics 
for the processes of convective heat and mass transfer, but this problem goes beyond the 
scope of this article. 

In conclusion, let us take note of the fact that Eq. (9), the analysis of which was 
the whole point of the problem, is a quasilinear degenerating equation of the parabolic type. 
A great number of papers (see reviews [14, 15]) have been devoted to the study of various 
physical objects described by equations of this type; however, in these reviews we find con- 
sideration given only to second-order equations. A rather complete qualitativeanalysis 
of the solutions for Eq. (9) is presently not available. 

NOTATION 

~0, magnetic constant; p, density; o, electrical conductivity; v, kinematic viscosity; 
6, surface tension of the fluid; B0, J0, oscillation amplitudes for the external magnetic 
field and for the current density which brings it about; L, characteristic drop dimension; 
P, pressure; u, v, projections of velocity; x, y, t, coordinates and time; m, mass of the 
drop. 

. 

8. 
9. 

I0. 
ii. 

12. 
13. 

14. 

15. 

LITERATURE CITED 

B. V. Deryagin and N. V. Churaev, Wetting Films [in Russian], Moscow (1984). 
V. E. B. Dussan, Annu~ Rev. Fluid Mech., ii, 371-400 (1979). 
V. V. Pukhnachev and V. A. Solonnikov, Prikl. Mat. Mekh., 46, No. 6, 961-971 (1982). 
L. M. Hocking, J. Fluid Mech., 79, Pt. 2, 209-229 (1977). 
O. V. Voinov, Zh. Prikl. Mekh. Tekh. Fiz., No. 2, 92-96 (1977). 
K. B. Pavlov, A. S. Romanov, and A. P. Shakhorin, Numerical Methods for the Mechanics 
of Continuous Media [in Russian], Vol. 17, No. 3 (1986), pp. 132-138. 
C. A. Miller and E. Ruckenstein, J. Colloid Interface Sci., 48, 368-373 (1974). 
E. Ruckenstein and C. S. Dunn, J. Colloid Interface Sci., 59, No. i, 135-138 (1977). 
B. V. Deryagin, N. V. Churaev, and V. M. Muller, Surface Forces [in Russian], Moscow 
(1985). 
P. J .  De Gens, Usp. F iz .  Nauk, 151, No. 4, 619-981 (1987). 
A. B. Va tazh in ,  G. A. Lyubimov, and S. A. R e g i r e r ,  Magnetohydrodynamic Flows in Channels 
[in Russian], Moscow (1970). 
H. Schlichting, Boundary-Layer Theory [Russian translation], Moscow (1974). 
V. Vazov, Asymptotic Expansions for Solutions of Ordinary Differential Equations [Rus- 
sian translation], Moscow (1968). 
K. B. Pavlov, "Processes of transfer in nonclassic media," Preprint, ITPM SO AN SSSR, 
Novosibirsk (1983). 
L. K. Martinson, Mathematical Modeling. Processes in Nonlinear Media [in Russian], 
Moscow (1986), pp. 280-310. 

185 


